通过写读后感,我们可以将阅读变成一种深入思考和创造的过程,让作品在我们心中留下深刻的痕迹,阅读一本好书后,写读后感能够帮助我总结和梳理自己的思考和感受,下面是淘范文小编为您分享的数学课读后感参考7篇,感谢您的参阅。
数学课读后感篇1
这本书说了全宇宙“最”聪明的怪怪老师闪亮登场,却让同学大跌眼镜,穿着睡衣睡裤,还拿个大抱枕头!而这个怪怪老师却拥有魔法,想想:坐在摩天轮上学习加减乘除法穿越到垩记排布数列的解读恐龙······
我认为可以这样总结:“(怪怪老师+奇幻冒险)*百变教室=课本上学不到的数学”通过读这本书,我感到数学十分好玩,其实只要你用正确的学习方法,数学是很简单的,是很有趣的!让我在学习数学中产生了浓厚的兴趣,我爱数学。
这就是我寒假读的一本书,如果你也感兴趣就买来看看吧!
数学课读后感篇2
今天我读了《数学家华罗庚的故事》这一篇文章,华罗庚是我国著名的数学家,中国科学院院长。
华罗庚小时候是个调皮、贪玩的孩子,可对数学却很感兴趣。他在读完中学后,因为家里贫穷,交不起学费,从此华罗庚失学了,他回到家后只能依靠卖点小东西生活。
不能上学并没有阻挡华罗庚爱学习的势头,他从此以后便自己学,一年到头华罗庚几乎每天都要用十几个小时来学习,勤奋好学的他走进了数学王国……。
1932年在熊庆来教授的帮助下,华罗庚到了清华大学数学系当一名管-理-员,他一人干几个人的事,却还在继续自学……。
功夫不负有心人,华罗庚终于成了我国著名的数学家!
读了《数学家华罗庚的.故事》我明白了,一个人不论干什么事都要坚韧不拔,那样才可以达到自己的要求,实现自己的梦想!
暑假里,我读了一本书,书的名字叫《数学家的故事》,讲述了许多数学名人的故事。比如毕达哥拉斯、阿基米德、高斯……其中,我最感兴趣的是关于祖冲之的故事。
数学课读后感篇3
寒假里,我读了一本书,书的名字叫《数学家的故事》,讲述了许多数学名人的故事。比如毕达哥拉斯、阿基米德、高斯其中,我最感兴趣的是关于祖冲之的故事。
祖冲之是我国南北朝时期一位伟大的科学家,他对圆周率的计算得出了非常精确的结果。这篇文章讲的是祖冲之经过很长时间的编写,终于写成了《大明历》,他上书皇帝,请求颁布实行。皇帝命令主管天文历法的宠臣戴法兴进行审查。但是戴法兴思想保守,是个腐朽势力的卫道士,他极力反对新历法。面对戴法兴的刁难、攻击,祖冲之寸步不让,和他唇枪舌剑的辩论。最终,《大明历》没有通过,后来在祖冲之去世后10年,《大明历》才颁布实行。
读了这个故事,使我对祖冲之坚贞不屈的精神非常敬佩。正因为他有这样的精神,才能持之以恒地坚持。是啊,任何事情要取得成功,都离不开坚持两个字。不由地,我想到了许多人,有文化名人、爱国将士,他们何尝没有这样的精神呢!
读《数学家的故事》让我更加喜欢数学,更让我懂得了许多道理。其实,学习数学并不难,数学王子高斯曾有三大秘诀:1.善于观察2.善于动手3.善于思考。其实,只要我们喜爱数学,就一定能学好数学!如果我们像数学先辈们那样努力,数学一定又能有新的突破!
数学课读后感篇4
常言道学而不思则罔。一次在某数学论坛闲逛,发现多人在谈论此书,而且评价都非常的高,想想又是和数学有关的,于是一时心血来潮就买了这本书,直到真正阅读此书时,这本书已经在抽屉积尘多时。读了之后才发现收获真的是太多了。
?什么是数学》既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。它是一本世界著名的数学科普读物。书中搜集了许多经典的数学珍品,给出了数学世界的一组有趣的、深入浅出的图画,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。
i·斯图尔特增写了新的一章,以新的观点阐述了数学的最新进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。
爱因斯坦评论说:“《什么是数学》是对整个数学领域中的基本概念及方法的透彻清晰的阐述。”阅读此书让我们明确知道了什么是数学?数学是对思想和方法的研究。而目前我们的数学教学有时竟演变成了空洞的解题训练。这种训练虽然可以提高形式推导的能力,但却不能导致真正的理解与深入的独立思考。数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系。所以,我们必须醒悟到数学教学应以培养思维能力为终极目的。阅读《什么是数学》,将对教师、学生和一般受过教育的人有一个建设性的改造,让大家真正理解数学是一个有机的.整体,是科学思考与行动的基础。
作为一名数学教师,不仅要帮助学生学习掌握数学知识,更要注重培养学生的思维能力,掌握数学思想和方法。数学是一种思维方式,而绝不是解题训练。这是我们每一个数学教师都要注意的地方。回到我自己的教学,我想若让学生在整体上对数学有了一个认知,会让学生学起来不再觉得数学是那么枯燥和可怕。但若想像本书作者那样高屋建瓴,在课堂上学生生成的问题中,判断出哪些是数学本质的知识,纯熟地处理有关的数学内容,还要取决于我们身为师者的数学底蕴了。作为一名数学教师,不仅要帮助学生学习掌握数学知识,更要注重培养学生的思维能力,掌握数学思想和方法。所以,我们必须醒悟到数学教学应以培养思维能力为终极目的,而绝不是解题训练。这是我们每一个数学教师都要注意的地方,这也是我今后努力地方向。
数学课读后感篇5
在这个寒假,我阅读了一本名叫《这才是好读的数学史》这本书叫这个名字确实是名副其实,他为人们介绍了最全面的数学史,以及名人与数学之前的故事,还有各国数学的起源到发展。
数学的形状和名称以及关于计数和算数运算的基本概念似乎是人类的遗产。早在公元前500年,数学就出现了,随着社会的不断发展,就需要一些方法来统计拖款欠税的数额等等,这时候数学就开始出现了。那时候的古埃及人用墨水在纸草上书写这种,这种材料是不易保存数千年的。大多数埃考古家挖掘的石头都是在神庙和陵墓附近,而不是在古城遗址。因此我们只能通过少量的资料来考察古埃及的数学发展史。
许多古代文化发展了各式各样的'数学,但是希腊数学家们是独一无二的,他们将逻辑推理和证明摆在数学的中心位置。希腊数学传统的保持和发展一直延续到公元400年。我们了解的希腊数学最早是欧几里得的《几何原本》,可我们也只了解这一本著名的书。希腊数学的优势便是几何,尽管希腊人也研究了整数,天文学,力学。但是根据古希腊几何学史学家的说法,最早的希腊数学家是600年前的泰勒斯,毕达哥拉斯都要比他晚一个世纪,当记录历史时,泰勒斯和毕达哥拉斯都成为了远古时期的神话级人物。
又在20世纪初,希伯尔特提出了一系列重要问题,又在21世纪开始在克莱数学学院的带领下,选择7个数学课题,并且提供的100万美金来解决每一个问题数论则是另一个发展方向。正如我们的数学概念小史中解释的,费马的最后定理在1994年得到了证明。
在今天的数学中涉及了许多不同的领域,所以我们要好好学习数学,并且多看有关数学的书,才能使我们的数学成绩突飞猛进。
数学课读后感篇6
如果要评选最令人痛恨的科目,估计非数学莫属了。
人类花了几百年时间才形成了现代数学完备的理论体系,结果却要求我们在3—5年里全部学完。这显然是要杯具的。也显然是除了背公式就没有其他办法的。
数学,小学的时候全是数字,初中的时候加入了xy,高中的时候基本没数字了,大学高数不但数字少,而且各种符号满天飞。
其实想想就明白了,古时候的人们真的是闲的才去研究数学的.吗?明显是在工程工作和实际生活中遇到了难题,需要数学这个科学的皇后来解决,于是人们才去研究的数学啊。数学是与应用分不开的啊。为什么在学习的过程中,却被生生剥离了实际呢?《数学之美》里面的一句话提醒了我,几乎所有的科学家都是数学家,但是很少有数学家同时是语言学家。
会做事而不会讲事的人,编写了我们的教材。
如果《数学之美》的作者吴军执笔重写我们的数学教科书,说不定中国会出现更多的数学家。
由于每个月都买1—2百的书,对什么是好书,我现在心里是越来越有底了。其实标准很简单,能不罗嗦的把事情给讲清楚了,就是好书。从这个标准出发,我杯具的发现,国内的教科书极少有满足这个简单的标准的。大部分是生搬硬套,大杂烩一锅炖。
本着事情要讲清楚的原则,现在的数学教科书,就应该把课后习题给详解。把公式隐含的条件反复的强调,而不是像躲猫猫一样找死不见,解体的时候应该循序渐进,适量更新,而不是几十年不变。那些公式什么的,你多解释几遍,多用文字讲解一下,多写点有用的中文,少推导些万年不用的公式,少写点“容易得出”“易推导出”这些无用的文字,增加一下让教科书的可读性,行不行?别整的公式套公式,显得你编书的人很牛逼似地,其实你就是一心虚的。心虚怕讲得多错的多,被人质疑你的权威性,逼就是有错不改,强卖垃圾,编的这么烂,如果不是指定教材,放到市场上有人买才怪。最恶心的还垄断,还不给别人编。
?数学之美》是把数学怎么简单,怎么好理解就怎么讲。
教科书是公式一摆,撒手不管,习题雷同例题,与实际脱节,任外面山洪海啸,我自岿然不动。
中国的教科书啊,学一下国外的吧。北大出版社翻译出版的《经济学原理》虽然是教科书,但是凡是对经济有一丁点兴趣的人,都会对这套书称赞不已。这才是教科书应有的样子啊。
数学课读后感篇7
?马小跳玩数学(四年级)》这本书中,有很多有趣的故事片段,更有很多惊险的故事片段。其中,我认为最惊险的片段就是热带丛林遇险的故事。
故事的情景是这样的:马小跳和他的丁克舅舅去非洲丛林参加暴走活动。谁知,马小跳和他的团队竟然被红毛族人包围了!族人首领递给他们一块树皮,上面写着:
8*8=89*9*9=59*3=3(93+8)*7=83789*57=?
首领还说:“我们的算式中,数字和你们代表的数不同。你们要算出这堆算式中最后一个算式的正确结果,否则你们就必须在这里干一年苦役!”
丁克舅舅哪想干一年苦役呢?他和团队中的结果精英左思右想,可他们都没有想到方法,他们只好把树皮交给了马小跳。一个小时后,马小跳竟然想出了答案!
原来,由8*8=8可以想到1*1=1,所以8对应的是1。9*9*9=5,相当于9的立方为5,所以9等于2,5等于8。因此9*3=3,可以转化成2*3=3,那就是说3等于0。(93+8)*7=837就可以写成(20+1)*7=107,可以判断出7等于我们的5,所以89*57可以化成12*85,12*85=1020,再转成红毛族人的数得出答案是8393,问题当然就迎刃而解了。
读了这个故事后,我懂得了:做事不能盲目思考,要像马小跳一样,有顺序有条理地思考。