教案的撰写能够帮助教师更好地把握教学的核心内容与结构,教案中融入的合作项目可以提高学生的合作意识,淘范文小编今天就为您带来了人教版五年级数学下册教案8篇,相信一定会对你有所帮助。
人教版五年级数学下册教案篇1
教学目标
1.经历并探究奇数、偶数相加的规律。
2.运用数的奇偶性解决一些简单问题。
3.培养探索精神,树立科学严谨的学习态度。
教学重难点
学习重点:掌握奇数、偶数相加的规律。
学习难点:灵活地运用奇数、偶数相加的规律。
教学工具
ppt课件
教学过程
一、复习导入,引入新课。(7分钟)
1.课件出示:
(1)什么叫做奇数?什么叫做偶数?
(2)什么样的数叫做质数?什么样的数叫做合数?
2.找出20以内的奇数、偶数、质数和合数。(课件出示)
(1)奇数有:
(2)偶数有:
(3)质数有:
(4)合数有:
3.引入新课:这节课我们一起来探究奇数、偶数相加的规律。
二、自主探究,总结探究奇数、偶数相加的规律。(18分钟)
1.课件出示例2,读题,理解题意。
2.引导学生找几个奇数、偶数然后加起来,通过探究,你们发现了什么规律?
3.根据学生的汇报进行小结。
4.验证猜想
奇数-偶数=( )
奇数-奇数=( )
偶数-偶数=( )
学案
1.回顾学过的概念。
(1)在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
(2)一个数,如果只有1和它本身两个因数,这样的数叫做质数。一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
2.独立思考,集体交流。
(1)奇数有:1、3、5、7、9、11、13、15、17、19
(2)偶数有:0、2、4、6、8、10、12、14、16、18、20
(3)质数有:2、3、5、7、11、13、17、19
(4)合数有:4、6、8、9、10、12、14、15、16、18、20
3.明确本节课的学习内容。
(1)观看课件,获取相关信息。
(2)偶数+奇数=( )
奇数+奇数=( )
偶数+偶数=( )
4.小结:
偶数+奇数=奇数
奇数+奇数=偶数
偶数+偶数=偶数
5.验证交流。
奇数-偶数=奇数
奇数-奇数=偶数
偶数-偶数=偶数
三、巩固练习(10分钟)
1.完成教材第16页第4题。
2.完成教材第17页第6、7题。
四、课堂总结,拓展延伸。(5分钟)
1.通过本节课的学习,你有什么收获?
2.读一读教材第17页“你知道吗?”
课后小结
在学习了质数和合数,奇数和偶数的基础上来探究奇数、偶数相加的规律。本节课的教学主要采用游戏法,让学生在游戏活动中加强交流,探索规律,形成自主、合作、探究的数学学习氛围。同时,也让学生体验到学习知识的乐趣,激发学生学习数学知识的兴趣。
本节课首先复习奇数、偶数、质数、合数的概念来引入新课,然后采用探究性问题让学生自主、合作、探究数的奇偶性,激发了学生学习的兴趣,营造了和谐、愉快的`学习氛围。练习题的设计也具有针对性,有助于培养学生运用数的奇偶性来解决问题的能力。
课后习题
1.判断题。(对的画“√”,错的画“×”)
(1)在2,3,4,5…中,除了合数以外都是质数。( )
(2)所有的偶数一定是合数,并且所有的质数一定是奇数。( )
(3)1既不是质数,也不是合数。( )
(4)两个质数的和都是偶数。( )
答案:(1)√(2)×(3)√(4)×
2.不计算,判断下列算式的结果是奇数还是偶数。(在结果是奇数的算式下画横线,在结果是偶数的算式下面画波浪线)
328+736 836-655
1000-427-144
1+2+3+4…+19
23×16-11×7
答案:328+736 836-655
1000-427-144
1+2+3+4…+19
23×16-11×7
人教版五年级数学下册教案篇2
学习内容:
课本第97页例1及“做一做”,第99页练习十九第1、2、3题。
学习目标:
1.我会用分数与小数的关系,把小数化成分数。
2.我能应用所学数学知识解决问题的能力。
学习重难点:
小数化分数的方法。
学习过程:
一、导入新课
请大家回忆一下,说说小数的'意义是什么?本节课,我们一起学习分数和小数的互化,怎样把小数化成分数?
二、合作探究、检查独学
1.自学例1,小组合作交流
用分数表示:
用小数表示:
这两个结果有什么关系:
2.用自己的话说一说怎样把小数化成分数?应注意什么问题?
①我的想法:
②完成课本97页“自己试一试”三个填空题。
3.小组代表展示、汇报
4.总结升华
5.我能行:“做一做”把下列小数化成分数。
0.4= 0.05= 0.37=
0.45= 0.013=
人教版五年级数学下册教案篇3
?教学内容】 人教版五年级数学下册第二单元质数和合数例1。
?教学目标设计】
1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。
2、过程与方法:采用探究式学习法,通过观察、自主学习-合作、交流验证-分类、比较-抽象-归纳总结-巩固 。 提高学习过程,培养学生观察和概括能力,培养学生积极探究的意识。
3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。
?教学重难点】:
1. 掌握质数、合数的概念。
2. 正确地判断一个数是质数还是合数?
?教具学具准备】:课件
教学过程:
一. 导入新课:
1.导入课题:前面我们学习了奇数和偶数。那么自然数还有没有其他的分法?今天这节课我们就一起来研究“质数与合数”(板书课题)
2.说出自己的学号、爸爸、妈妈、爷爷或奶奶的年龄,老师判断这个数是质数还是合数?
3.激发兴趣。
二.探究新知。
1.说出1~20各数的因数。(课件出示,开火车的形式)
2.观察思考 这些数的'因数的个数一样多吗?(生:不一样)
3.师:你能把这些数按因数的个数进行分类吗? ( 学生讨论,分类 )
4.学生报结果(学生完成表格)
5. 观察比较,发现特点,归纳概念。
(1)师:观察2.,3,5,7,11,13,17,19 这几个数的因数的个数有什么特点?
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
(2)师:观察4,6,8,9,10,12,14,15,16,18,20这几个数的因数的个数有什么特点?
一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
(3)师:1既不是质数,也不是合数。
6.最小的质数是几?有没有最大的质数?最小的合数是几?有没有最大的合数?
7.展示老师和学生制作的思维导图。
8.判断自己的学号是质数还是合数?
三.自学例1:
1.指名汇报预习的结果。
2.质疑。
3.找质数的方法是:筛选法。
4.修改自己圈的质数。
5.出示质数歌。
四.智慧大闯关:
1.判断下面的数字是质数还是合数?
(1)全年12个月,大月有31天,小月是30天,平年2月是28天, 闰年2月是29天。
(2)五(1)班上学期有52人,这学期又转来1名学生,现在共53人。
2. 下面的说法正确吗?说一说你的理由。
(1)所有的奇数都是质数。 ( )
(2)所有的偶数都是合数。 ( )
(3)在1,2,3,4,5,…中,除了质数以外都是合数。( )
(4)两个质数的和是偶数。 ( )
3.猜数。
4.猜一猜老师的电话号码是多少?
(1)是奇数,但不是质数也不是合数。
(2)比最小的质数大1。
(3)比最小的合数大2。
(4)10以内最大的奇数。
(5)是奇数,但不是质数也不是合数。
(6)10以内既是奇数,又是合数。
(7)和第6个数相同。
(8)10以内最大的质数。
(9)10以内最大的偶数。
(10)和第一个数相同。
(11)是最小的偶数。
5.数学游戏。
五.数学文化:
结合数学文化进行思想教育。
人教版五年级数学下册教案篇4
一、教学内容
课本p38~40。
二、教学目标
1.知识与技能
使学生理解体积的意义;认识常用的体积单位:立方米、立方分米、立方厘米。
2.过程与方法
让学生经历探索体积和体积单位的过程,发展学生的空间观察能力和培养学生的推理能力。
3.情感、态度与价值观
使学生形成空间观念,体验所学知识与现实生活的联系,使其能运用所学知识解决生活中简单的问题,从中获得价值体验。
三、重点难点
1.教学重点
体积概念的建立以及对体积计量方法的理解。
2.教学难点
感知物体的体积以及建立体积单位的概念。
四、教学用具
1立方米、1立方分米、1立方厘米的模型;水杯,水,沙子,大小石块(用线系好),木块等;10个1立方厘米的正方体。
五、教学设计
(一)铺垫选择研究方向
1.引入:在装有半杯蓝色水的玻璃杯中(先在水面处做个记号)放入一块石块。
2.观察思考。
(视频脚本三:长方体和正方体4.土豆放入水杯的动画片。)
(1)水面的位置发生了什么变化?杯中的水为什么会上升?
(2)杯中的水为什么会上升,这就是我们今天要研究的内容。
(二)发现并认识体积
1.想一想:是不是所有的物体都占有一定的空间?用桌上提供的物品验证。有:木块、沙子、火柴盒、工具箱、石块、玻璃球……
2.教师巡视与学生一起探讨。
3.提问汇报。
(1)你们是怎样进行实验的?
(2)你们在实验过程中观察到了什么现象?
(3)学生动手操作。
(4)学生回答。
生:我们拿出自带的装满细沙的杯子,先把细沙倒在纸上,把一块木块放入杯中,然后再把细沙倒入杯中,沙子不能全部倒入杯中,有剩余部分,因为木块占有一定空间。
4.表象再现。
(1)闭眼回忆刚才验证物体的样子。
(2)学生闭眼想象。
5.抽象体积的概念。
(1)物体所占的空间一样吗?
(2)学生回答。
生:我们先把小石块放入杯中,然后在水面上升处作个记号。取出石块,再放入大一些的`石块,发现水面比原来的水面高了。
(3)为什么上升的水面会比原来的高?
(4)学生回答。
生:因为大石块占的空间大,所以上升的水面比原来的高。也就是说,物体的大小不一样,所占空间的大小也不一样。
6.看来物体所占空间有大有小,物体所占空间的大小就是物体的体积。
(1)什么叫物体的体积?
(2)学生回答:物体所占空间的大小叫做物体的体积。
7.看书质疑。
(三)自我探索体积单位
1.要知道一个物体的体积有多大,或者一个物体的体积比另一个物体的体积大多少或少多少,该怎么办?这就需要计量,计量体积要用体积单位。
2.猜想。
你听说过哪些体积单位?
(1)常用的体积单位有哪些?
(2)汇报:将你们学习到的说给大家听听。
(3)学生回答。
棱长1厘米的正方体,体积是1立方厘米;
棱长1分米的正方体,体积是1立方分米;
棱长1米的正方体,体积是1立方米。
(视频脚本三:第三单元长方体和正方体5.视频“1立方米的空间有多大”的演示)
3.估量体积单位。
(1)1立方厘米的空间有多大?比画比画。
(2)什么物体的体积大约接近1立方厘米?
(3)1立方分米有多大?比画比画。
(4)什么物体的体积接近1立方分米?
(5)1立方米呢?
(6)1立方米有多大?利用一些工具体验大小,你们钻进去试一试。(准备3个米尺)
4.填入适当的单位。
(1)橡皮的体积大约是5()。
(2)桌子的体积大约是240()。
5.质疑。
(四)体积的初步计量
1.教师演示(学生跟着摆)。
(1)出示2个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?
(2)出示6个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?
(3)(改变长方体的摆法)这是长方体吗?它的体积是多少?为什么仍是6立方厘米?
(4)(再改变形状)形状变了,体积有没有变?为什么?
(5)为什么不管摆什么形状,体积都是6立方厘米?
2.学具操作。
(1)你们每人桌上都放有10个1立方厘米的正方体,现在请你们摆一个体积是9立方厘米的长方体,想想怎么摆?
(2)为什么所摆的长方体的体积都是9立方厘米?
3.归纳概括。
(四人一组讨论)根据刚才所摆的图形,你怎么知道这些物体的体积是多少的?
(五)巩固练习
1.填空
常用的体积单位有()、()、()。
常用的面积单位有()、()、()。
常用的长度单位有()、()、()。
棱长()的正方体的体积是1立方厘米。
棱长()的正方体的体积是1立方分米。
棱长()的正方体的体积是1立方米。
2.在括号里填上适当的单位。
(1)一根粉笔的体积大约是10()。
(2)讲台桌的体积大约是0.4()。
(3)一本《新华字典》的体积大约是0.35()。
(4)一张信纸的面积大约是5()。
(5)一块城砖的体积大约是3()。
3.拼一拼,说说是由几个1立方厘米的正方体组成的?
(六)全课总结
通过这节课你有哪些心得和体会?你还有哪些问题?
(七)板书设计
体积和体积单位
意义:物体所占空间的大小叫做物体的体积。
单位:立方厘米、立方分米、立方米。
计量:要看这个物体含有多少个体积单位。
人教版五年级数学下册教案篇5
教学目标:
1、通过欣赏与设计图案,使同学进一步熟悉已学过的对称、平移、旋转等现象。
2、欣赏美丽的对称图形,并能自身设计图案。
3、同学感受图形的美,进而培养同学的空间想象能力和审美意识。
重点难点:
1、能利用对称、平移、旋转等方法绘制精美的图案。
2、感受图形的内在美,培养同学的审美情趣。
教学准备:幻灯片、课件。
教学过程:
一、情境导入
利用课件显示课本第7页四幅美丽的图案,配音乐,让同学欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让同学尽情发表自身的感受。
(二)说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的'?
2、上面哪幅图是对称的?先让同学边观察讨论,再进行交流。
三、巩固练习
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、 交流并欣赏。说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉和到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
五、安排作业:
教材第9页第5题。
板书设计:
欣赏和设计
图案1 图案2
图案3 图案4
对称、平移和旋转知识有广泛的应用。
人教版五年级数学下册教案篇6
教学目标
1.充分体会小括号在混合运算中的作用,对含有小括号的两级混合运算进行脱式计算。
2.理解和掌握含有两级运算(有括号)的混合运算的运算顺序,并能正确运用运算顺序进行计算。
3.引导学生养成先看运算顺序,再进行计算的良好习惯,规范脱式计算的格式。
教学重点
理解并掌握含有小括号的混合运算的运算规律。
教学难点
运用运算规律进行脱式计算。
教学过程:
一、复习小括号的知识。
你还记得58-(14+6)它的运算顺序吗?
58-(14+6)
=58-20
=38
学生在进行脱式计算时,提醒学生注意,用横线标出第一步的计算内容。把不参与运算计算的部分落下来。这节课我们要学习的内容也与小括号有关。(含有小括号的两步混合运算)
二、探究新知
(一)独立尝试有小括号的混合运算
7×(7-5)(77-42)÷7
(二)根据学生板演,进行集体讲解。
总结运算规律。
这两道算式有什么相同之处?
1都有小括号;都是两级运算;有乘除法,也有减法。
2含有括号的`算式,是按怎样的顺序进行计算的呢?
算式里含有小括号的,我们一定要先算小括号里面的,再计算括号外面的。
在脱式计算时要注意在算式下面第一行落下没有参加计算的数和运算符号,在第二行写出第二步计算的结果。等号要对齐。
三、巩固练习
1.对比练习,发现小括号的作用。
课件出示练习题。
7×5-2 7×(5-2)
=35-2 =7×3
=33 =21
(1):左、右两题有什么相同点和不同点?
(2)小括号在这里起到什么作用?
讲解:左面的算式没有括号先算乘法,再算减法;右面的算式有括号,先算小括号里面的减法,再算括号外面的乘法。
小结算式里含有小括号的,要先算小括号里面的。通过比较发现小括号的作用可以改变计算结果不同,小括号还能改变运算的顺序。
2、先填空,再列综合算式。
在掌握含有小括号的混合运算的运算顺序的基础上,设计有层次性的练习。在练习中不仅凸显小括号的作用,而且训练学生列综合算式的能力。这样既巩固了新知,也为下一节课的学习打下坚实的基础。
人教版五年级数学下册教案篇7
【教学目标】
1.知识与技能
(1)认识并掌握正方体的特征,理解长方体与正方体之间的关系。
(2)培养学生的观察操作能力,抽象概括能力,发展空间观念。
2.过程与方法
(1)通过观察实物和动手操作等教学活动,使学生掌握正方体的特征。
(2)通过小组合作学习,探究长方体与正方体的关系。
3.情感态度与价值观
(1)体验合作探究的乐趣,培养学生的合作意识。
(2)感受数学与生活的联系,发展学生的思维。
【教学重点】
正方体的特征及长、正方体的异同点。
?教学难点】
建立立体图形的概念,形成表象。
【教学方法】
启发式教学、自主探索、合作交流、讨论法、讲解法。
【课前准备】
多媒体课件
【课时安排】
1课时
【教学过程】
(一)复习旧知,导入新课。
1、师:上节课我们学习了长方体的特点,请你回忆一下,回答下面的问题。(课件第2张)
(1)长方体有(6)个面,都是(长方)形,也可能有(2)个相对的面是正方形。长方体相对的面(完全相同)。
(2)长方体有(12)条棱,相对的棱(长度相等)。
(3)长方体有(8)个顶点。
在我们的身边,除了许多长方体的物体,还有许多是正方体。(课件第3张)
比如:骰子、魔方、沙包、积木、礼品盒等,这些都是正方体。
你还能说出生活中的哪些物体是正方体呢?
生举例说。
【设计意图】
从学生熟悉的生活中的事物引入,使学生感觉到数学与生活的紧密联系,感受到生活中处处有数学。
2、你知道它有什么特征吗?这节课我们就来学习和研究正方体的特征,并板书课题。
(二)探究新知
1.仔细观察课前准备好的正方体,你发现正方体有什么特点?
(1)小组合作:
拿一个正方体的物品来观察,想一想它有什么特点?
(2)汇报交流:(课件第6张)
生1:正方体的6个面都是正方形,并且完全相同。
生2:正方体的12条棱长度都相等。
2.总结正方体的特点。(课件第7张)
正方体有6个面,每个面都是正方形,这6个面完全相同。
正方体有12条棱,所有的棱长度都相等。
正方体有8个顶点。
正方体是由6个完全相同的正方形组成的立体图形,所有的棱长度相等。
【设计意图】
用小组讨论的方式,让学生从观察实物的过程中发现正方体的特点,培养学生的观察能力、思维能力。
3.小组讨论:长方体和正方体的异同点。
拿出一个长方体和一个正方体,观察一下:正方体和长方体有什么相同点,有什么不同点?(课件第8、9张)
生1:长方体和正方体都有6个面,12条棱,8个顶点。
生2:长方体的6个面一般是长方形,正方体的6个面都是正方形。
生3:长方体相对的棱长度相等,正方体的所有棱长度都相等。
4.列表比较一下:(课件第10、11张)
5.长方体和正方体的关系(课件第12张)
师:长方体和正方体有什么关系?
生1:正方形是特殊的长方形,正方体也是特殊的长方体。
师:特殊在哪里?
生2:正方体可以看做是长、宽、高都相等的长方体。
师:你会用集合图来表示它们的关系吗?
6.小结:(出示课件第13张)
(1)正方体的6个面都是完全相同的正方形。
(2)正方体的12条棱都相等。
(3)正方体是长、宽、高都相等的长方体。
【设计意图】
对所学的知识加以总结,加深学生印象,使学生能查漏补缺,更好地掌握本节课所学的知识点。
7.做一做:(课件第14张)
小组活动:小组同学配合,用棱长1cm的小正方体搭一搭。并思考:
(1)搭一个稍大一些的正方体,至少需要多少个小正方体?
(2)用12个小正方体搭一个长方体,可以用几种不同的摆法?搭出的长方体的长、宽、高分别是多少?
(3)搭一个四个面都是正方形的长方体,你发现了什么?
8.答案揭晓:(课件第15张)
(1)搭一个稍大一些的正方体,至少需要8个小正方体。如下图:
(2)用12个小正方体搭成一个长方体,可以有几种不同的摆法?搭出的长方体的长、宽、高分别是多少?(课件第16张)
第一种摆法:
这个长方体的长是12cm,宽是1cm,高是1cm。
第二种摆法:(课件第17张)
这个长方体的长是6cm,宽是2cm,高是1cm。
第三种摆法:(课件第18张)
这个长方体的长是4cm,宽是1cm,高是3cm。
【设计意图】
通过让学生动手操作,用小正方体摆成不同的长方体,可以使学生对长方体和正方体的特点理解的.更为透彻,为下一步学习长方体和正方体的表面积和体积做好准备,同时也培养了学生的动手能力。
(3)搭一个四面都是正方形的长方体,你发现了什么?(课件第19张)
搭一个四面都是正方形的长方体,搭成的长方体其实就是一个正方体。
(三)课堂练习
谈话:同学们,你们学得怎么样了?我们一起到智慧乐园挑战一下自己吧!有没有信心呢?
1.这个正方体的棱长是多少?有几个面的形状完全相同?(课件第20张)
这个正方体的棱长是5cm。它有6个面的形状完全相同。
【设计意图】
本题的设计能让学生更好地理解正方体的特点,知道正方体的棱长都相等,6个面也是完全相同的。
2.这个正方体的棱长之和是72分米,它的棱长是多少分米?(课件第21张)
正方体12条棱相等,棱长和是72dm,可以求出一条棱的长度。
72÷12=6(分米)
答:它的棱长是6分米。
(四)拓展提高。(课件第22、23、24张)
用铁丝做一个底面周长是56厘米的正方体框架,需要铁丝多少厘米?
(1)小组讨论:先求什么?再求什么?说说你的思考过程。
(2)汇报交流:
正方体的12条棱都相等,可以先求一条棱的长度,再求12条棱的总长度。
56÷4×12
=14×12
=168(厘米)
答:需要铁丝168厘米。
(3)底面周长就是4条棱长是总和,求12条棱长的总和,就是56厘米的3倍。
56×(12÷4)
=56×3
=168(厘米)
答:需要铁丝168厘米。
(五)课堂总结
师:通过学习,你有什么收获?
生交流:
1.正方体有6个面、12条棱、8个顶点。
2.正方体的6个面是正方形,6个面是完全相同的。
3.正方体的12条棱都相等。
4.正方体长、宽、高都相等的长方体。
(六)板书设计
正方体
1.正方体有6个面、12条棱、8个顶点。
2.正方体的6个面是正方形,6个面是完全相同的。
3.正方体的12条棱都相等。
4.正方体长、宽、高都相等的长方体。
【教学反思】
1、遵循学生认知规律,正确把握教学起点
充分尊重学生的已有知识,遵循学生的认知规律、学习经验、学习兴趣,恰当地把握教学起点。例如本课在导入时,以尊重学生原有知识经验为基础,先回忆有关长方体的特点的有关知识,再开门见山设计了辨认生活中那些物体是正方体,然后直接转入正方体特征研究,避免了教学拖沓、使学生迅速进入学习的重点。
2、注重动手操作,让学生积累空间观念。
正方体的认识在几何形体知识属于直观几何阶段,教学时我注重引导学生动手操作实践,让学生在看一看、摸一摸、认一认等实际操作中,使自己的多种感官参与活动,丰富自己的感性认识,掌握几何形体的特征,不断积累空间观念。
3、教会知识,更要教会获取知识的方法。
本节课的题目是正方体的认识,让学生用类比法参照长方体特征研究过程研究正方体的特征,最后进行两者之间的异同比较完成新知识的学习。这种过程的设计既留给了学生足够的自主探究的空间,同时又教会了一种知识探究的方法。学生学会了知识,也提高了能力。
人教版五年级数学下册教案篇8
教学目标
1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。
2.知道100以内的质数,熟悉20以内的质数。
3.培养学生自主探索、独立思考、合作交流的能力。
4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
教学重难点
质数、合数的意义。
教学工具
多媒体课件
教学过程
?复习导入】
1.什么叫因数?
2.自然数分几类?(奇数和偶数)
教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。
?新课讲授】
1.学习质数、合数的概念。
(1)写出1~20各数的因数。(学生动手完成)
点四位学生上黑板板演,教师注意指导。
(2)根据写出的因数的个数进行分类。(填写下表)
(3)教学质数和合数概念。
针对表格提问:什么数只有两个因数,这两个因数一定是什么数?
教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。
如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)2.教学质数和合数的判断。
判断下列各数中哪些是质数,哪些是合数。
17 22 29 35 37 87 93 96
教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)
质数:17 29 37
合数:22 35 87 93 96
3.出示课本第14页例题1。
找出100以内的质数,做一个质数表。
(1)提问:如何很快地制作一张100以内的质数表?
(2)汇报:
①根据质数的概念逐个判断。
②用筛选法排除。
③注意1既不是质数,也不是合数。
?课堂作业】
完成教材第16页练习四的第1~3题。
课后小结
?课堂小结】
这节课,同学们又学到了什么新的本领?
学生畅谈所得。
课后习题
(1)所有的奇数都是质数。( )
(2)所有的偶数都是合数。( )
(3)在1,2,3,4,5,…中,除了质数以外都是合数。( )
(4)两个质数的和是偶数。( )
(5)在自然数中,除了质数以外都是合数。( )
(6)1既不是质数,也不是合数。( )
(7)在自然数中,有无限多个质数,没有最大的质数。( )
板书
质数和合数(1)
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。