优秀的教案都是我们围绕自己的教学目标写出的,为了在接下来的教学工作中有更大的突破,我们一定要好好制定教案,淘范文小编今天就为您带来了2023年三年级数学下册教案优质6篇,相信一定会对你有所帮助。
2023年三年级数学下册教案篇1
教学内容:教材第44-45页
教学目标:
1、结合具体事例,经历自主探索乘法估算方法的过程,体验估算方法的多样化。
2、能结合具体问题进行简单的乘法计算,并解释估算的过程。
3、在解决问题的活动中,体验估算在生活中的作用,增强估算意识。
教学重点:培养学生的估算能力。
教学难点:能较准确的进行估算。
教学过程:
一、情境创设
我国人口十五亿,我国土地面积960万平方公里,我校有0多人,刘老师大约40岁等等,这些值都是估算值。
现在丫丫就遇到了一个问题需要我们帮忙估算一下,一起看看好吗?
学生读题并观察情景图,说一说事情中的数学信息及要解决的问题。
二、自主探索
买门票大约要多少钱?请同学们试着帮忙估算一下吧!
你还有其它方法吗?(1)把9看作10,把92看作90,约需900元。10×90=900(元)
(2)把92看作90,需810元。9×90=810(元)
(3)把9看成10,需920元。10×92=920(元)……
三、合作交流
1.小组交流
把你估算的方法向你小组的同学介绍介绍好吗?一定要说清楚你估算的过程呦!
2.全班交流
哪个小组愿意把你们小组的方法向全班同学说一说?
3.计算一下,看实际需要多少元?
想一想为什么有的估算结果与计算结果相差比较多,怎样做到合理地进行估算。
1.小组内交流估算的方法,然后共同算法。
2.小组内选派代表发言,其他小组准备作补充。
3.9×92=828(元)
把92看成90只不过少看了两个9,而把9看成10却多看了1个92,所以把
92看成90更接近计算结果。
四、实践与应用
1.估算一下:在大桥上观察,1分钟过去了38辆车,大桥上1小时有多少辆车通过?
2.估算一下这文章大约有多少字?
3.小组合作,估计1千克黄豆大约有多少粒?
4.作业:书上45页第2题。
板书设计
估算
(1)把9看作10,把92看作90,约需900元。
10×90=900(元)
(2)把92看作90,需810元。
9×90=810(元)
(3)把9看成10,需920元。
10×92=920(元)……
实际计算:
9×92=828(元)
教学随笔:
2023年三年级数学下册教案篇2
教学内容:
教材第63~64页例1及做一做,练习十五第1题。
教学目标:
1.使学生在笔算两位数乘一位数和口算两位数乘整十数的基础上,初步理解和掌握两位数乘两位数的笔算乘法的计算方法。
2.能正确地进行计算,培养学生的分析,归纳能力。
3.在实践操作活动中学会思考,学会解决问题,培养学生良好的学习习惯。
教学重难点:
初步理解和掌握两位数乘两位数的笔算乘法的计算方法,能正确地进行计算。
教具准备:
挂图
教学过程:
一、复习引入
1、计算
提问:用一位数乘多位数,我们该怎样计算?
小结:在计算一位数乘多位数时,用这个一位数依次去乘第一个因数的哪一位几十就向前一位进几。
2、口算
27×20 82×40 52×60 12×90
18×30 24×50 19×70 53×20
提问:两位数乘整十数你是怎样口算的。
二、快乐尝试,探索新知
1、出示教科书第62页的例题1。
(1)出示主体图,根据画面内容,口头编一道题例题1:妈妈到书店买了一套书,共12本,每本24元妈妈一共要付多少钱?
(2)分析:题目的已知条件和问题分别是什么?要求妈妈一共要付多少钱?该怎样列式?
4×12(为什么用乘法计算?)
教师:24乘2,我们已经回算,23乘12我们还没学过,这是用两位数乘的乘法,这就是我们今天要学的内容。
提问:谁能把24乘12转化成我们已学过的知识呢?以4人为一小组讨论。
(3)汇报:一种可以把12本书分成10本和2本两部分,我们可求出10本书多少钱,再求出2本书多少钱,然后把这两部分的钱加起来的就是妈妈要付的钱。
教师:刚才我们求妈妈买12本书用288元,计算时一共用了3个竖式,大家想一想,我们能不能把这3个竖式给并起来写成一个竖式呢?
(4)讲解24乘12竖式
刚才的一不我们是先算什么?怎样算?教师讲评时用纸把第二个因数十位上的“1”盖住。那计算2乘24先算什么?再算什么?先算2乘4表示8个一,再算2乘2表示4个十,合起来是48,在48的旁边注明24×2的积。此时,教师揭去盖在第二个因数十位“1”的纸,并问:
第二步要再算什么?怎样算?(第二步算的是10本书一共多少钱,用10乘24,得240,在240的旁边注明24×10的积)
教师对着竖式说明:十位上的1表示10,所以用十位的1乘24就是用10乘24,先用10乘4得40,4要写在十位上,个位写0,再用10去乘2,得20,但这个2表示2个十,10乘2得到的20应该表示20个十,20个十就是200,所以这个2必须写在百位上,因此,要在240的旁边主抿4×10的积。
第三步算的是什么?(把10本书的钱和2本书的钱加起来,也就是把48和240加起来,得288。)
说明:在把两个乘积加起来的时候,个位上是计算8加0,0只起占位作用,为了简便,这个零可以省略不写,边说边把0擦掉。
请一个同学复述一遍竖式计算的过程。
(5)提问:这个竖式同前面的三个竖式有没有联系?哪种方法更简便?
2、议一议:怎样笔算两位数乘两位数?
3、引导小结,归纳笔算方法。
三、巩固运用
完成教科书第63页的做一做。
(1)先看23×12,提问,两个因数分别是多少?
69是用哪位数与第一个因数相撤的积,下一步应该用哪位数去乘第一个因数?乘出的积是多少?
23乘13得多少?
(2)其余的题目独立完成,要求列竖式,最后教师讲评。
四、课堂总结
本节课我们学习了什么?你有哪些收获?
五、课堂作业
练习十五第1题。
2023年三年级数学下册教案篇3
教学内容:义务教育课程标准实验教材(人教版)三年级下册第8页。
教学目标:
1、使学生了解除了东、西、南、北这四个方向外,还有东南、东北、西南、西北这四个方向。
2、结合具体情境给定一个方向(东、南、西或北),能辨认其余的七个方向,并能用这些词语描述物体所在的位置。
3、借助各种活动,让学生体验数学与生活的密切联系,进一步发展空间观念。
4、培养学生收集信息的能力,进行爱国主义教育。
教学过程
一、布置课前预习:
1、查找有关指南针的资料。
2、寻找生活中什么时候会用到方位的知识。
二、谈话导入
(出示课本情境图)
通过前几堂课的学习小明学会辨认东、西、南、北四个方向。今天他带了一个指示方向的工具,再次来到校园中的操场上,准备继续学习更多与方向有关的知识。你们猜他带的是什么?(指南针)
三、学习新课
1、了解指南针的历史和使用方法,增强民族自豪感。
(出示指南针图)由学生汇报交流预习1收集的资
料,教师给予归纳,并重点指导怎样利用指南针辨别方向:
指南针是用来指示方向的。早在20xx多年前,我们的祖先就用磁石制作了指示方向的仪器──司南,后
来又发明了罗盘。指南针是我国古代四大发明之一。
指南针盘面上的指针受地球磁场的影响,红色的一头总是指向北,白色的一头总是指向南。人们根据这一原理利用指南针来辨别方向。
2、根据指南针现在的指示说说校园里东、西、南、北四个方向各有什么建筑。(北面是教学楼,南面是花坛,东面是图书馆,西面是体育馆)
3、借助指南针盘面上的标记认识东南、东北、西南、西北这四个方向。
问:多功能厅、食堂分别在校园的什么位置?你是怎么知道的?
引导学生归纳:
从“东”出发,东和北之间的方向就叫东北,东和
南之间的方向就叫东南。从“西”出发,西和北之间的方向就叫西北,西和南之间的方向就叫西南。
4、找出校园的东南方和西北方有什么建筑。
四、巩固练习
1、给出一个方向由学生讨论后制成方向板。
↑北
2、利用方向板辨认教室中的八个方向。
3、坐在座位上,说一说你的东南、东北、西南、西北分别是哪位同学?
4、出示我国行政区域图,问:这是哪国的地图?适时对学生进行爱国主义教育。
让学生找出我国首都北京的位置和厦门的位置,说说厦门在北京的什么方向,
北京在厦门的什么方向?
接下来让学生独立填写:
(1)厦门在北京的_____方向
(2)_____大致在北京的西北方向,
_____大致在北京的西南方向,
(3)北京的东南方有_____省市。
五、全课小结
1、这堂课学了什么?你有什么收获?
2、交流预习2:生活中什么时候会用到方位的知识。
教学设计说明:
“认识东南、东北、西南、西北”这一课,是“位置与方向”这一单元后半部分的内容。在该单元前面课程的学习中,学生已会在实景中辨认东、西、南、北,知道地图上的方向是上北、下南、左西、右东。本课我设计在课前让学生超前预习:布置学生自己去查找有关指南针的资料,这一方面增强学生收集信息的能力,另一方面增强了学生民族自豪感;布置学生课前寻找生活中什么时候会用到方位的知识,学生有充分的时间,找的答案涉及面广,在课堂中交流能了解更多的相关知识。新课教学中先让学生交流、汇报收集到的信息,了解指南针的历史,学会用指南针辨别方向。借助指南针盘面上的标记认识东南、东北、西南、西北这四个方向,并用来解决“多功能厅、食堂分别在校园的什么位置?”这个问题。在练习中首先让学生通过动手操作制作方向板,将知识进一步内化。接下来,先利用方向板辨认教室中的八个方向,再让学生坐在座位上说出自己的东南、东北、西南、西北分别是哪位同学。这两个活动让学生体验实景中的八个方向,感受数学与生活的密切联系,进一步发展空间观念。最后利用我国行政区域图,让学生用刚学过的四个方向描述某省市所在的位置,激发学生的学习兴趣,并结合进行爱国主义教育。
2023年三年级数学下册教案篇4
教学目标:
1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。
2、过程与方法:通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想。
3、情感 态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学习数学的兴趣。
教学重点:经历“鸽巢原理”的探究过程,理解鸽巢原理。
教学难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。
教学准备:多媒体课件、铅笔、纸杯、合作探究作业纸。
教学过程:
一、 唤起与生成
1、谈话:同学们,你们喜欢魔术吗?今天,黄老师给大家表演一个小魔术。一副牌,取出大小王,还剩52张牌,请5个同学每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?来,试试看。
2、验证: 抽取,统计。是不是凑巧了,再来一次。表演成功!
3、至少2张是什么意思?(也就是最少2张,最起码2张,反过来,同一花色的可能有2张,也可能是3张、4张、5张...,一句话概括就是至少2张)。
确定是哪个花色了吗 ?(没有)反正总有一个花色,所以,这个数据不管是在哪个花色出现都证明表演是成功的。
4、设疑:你们想知道这是为什么吗?其实这里面蕴藏着一个非常有趣的数学原理,这节课让我们一起去发现!
二、探究与解决
(一)、小组探究:4放3的简单鸽巢问题
1、出 示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
2、审 题:
①读题。
②从题目上你知道了什么?证明什么?
(我知道了把4支铅笔放进3个笔筒中,证明不管怎么放,总有一个笔筒里至少有2支铅笔。)
③你怎样理解“不管怎么放”、“总有” 、“至少”的意思?
“不管怎么放”:就是随便放、任意放。
“总有”: 就是一定有,不确定是哪个笔筒,这个笔筒没有那个笔筒会有。
“至少”: 就是最少,最起码。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。
3、探 究:
①谈 话:看来大家已经理解题目的意思了,眼见为实,就让我们亲自动手摆一摆、放一放,看看有哪几种放法?
②活 动:小组活动,四人小组。
听要求!
活动要求:每个小组都有笔筒和笔,请四个人中面对面的两人一人扶杯子一人放铅笔,另外两人一人口述一人记录,让我们齐心协力,摆出所有情况后,对照题目,看有什么发现。
听明白了吗?开始!
3、反 馈:汇报结果
同学们办法真多,有用画图法,有用数的分解来表示,都很清晰。谁来汇报一下你们的成果?
可以在第一个笔筒中放4支铅笔,其他两个空着。这种放法可以说成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(课件逐一出示)
追 问:谁还有疑问或补充?
预设:说一说你比他多了哪一种放法?
(2,1,1)和(1,1,2)是一种方法吗?为什么?)
只是位置不同,方法相同
5、验证:观察这4种摆法,凭什么说“总有一个笔筒中至少有2支铅笔”?
(1)逐一验证:
第一种摆法(4,0,0),是不是总有一个笔筒至少2支,哪个?放的最多的笔筒里有4支,比2支多也可以吗?
符合总有一个笔筒里至少有2支铅笔。
第二种摆法(3,1,0),符合。哪个?放的最多的笔筒里有3支,符合总有一个笔筒里至少有2支铅笔。
第三种摆法(2,2,0),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。
第四种摆法(2,1,1),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。
符合条件的那个笔筒在三个笔筒中都是最多的。
(2)设疑:我有一个疑问,第一种摆法(4,0,0)放的最多的笔筒里,放有4支,可以说总有一个笔筒至少有4 支铅笔吗?说成3支也不行吗?
(3)小结:哦,原来是这样,要考虑所有摆法,然后在所有摆法中,圈出每一种摆法中最多的,再从最多的里面找到至少数,就能得出这个结论。
所以,把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
(二)自主探究:5放4的简单鸽巢原理
1、过 渡:依此推想下去
2、出 示:把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有( )支铅笔。
3、猜 想:同学们猜猜看,至少数是几支?(你说、你说)
4、验 证:你们的猜测对吗?让我们来验证一下。
活动要求:
(1)思考有几种摆法?记录下来。
(2)观察每一种摆法,能不能从中找出答案。有困难的可以同桌合作。
好,开始。(教师参与其中)。
5、汇 报:把5支铅笔放进4个笔筒中,共有6种摆法
分别是:5000 、4100、 3200、 3110 、2200、2111
(课件同步播放)
预设:我圈出了每种摆法中,放铅笔最多的那个笔筒,然后发现,放铅笔最多的的笔筒里面至少放有2支铅笔。
6、订 正:有补充的吗?噢,我们来看,这6种摆法,把每种方法里放的(停顿)最多的铅笔圈出来了,分别是5支、4支、3支、2支,从中找到至少数是2支。
7、小 结:恭喜答对的同学!同学们可真是厉害!请看,我们研究了这样的两个问题:
①把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。会讲为什么。
②把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?会求至少数。
不管是对结论的证明还是求解至少数,我们都采用一一列举的方法,罗列出所有摆法,再通过观察,得出结论。
(三)、探究鸽巢原理算式
1、谈 话:哎,如果这里有 100支铅笔放进30个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?
还是让求至少数,还用一一列举的方法来研究,你觉得怎么样?
(好麻烦,是啊, 想想都觉得麻烦!)
2、追 问:数学是一门简洁的科学,那就请同学们想一想,除了通过操作一一列举出来,有没有什么方法能一下子找到结果呢?
其实,我们刚才已经和那一种方法见过面,以4放3为例,请同学们认真观察每一种摆法,分别找一找,哪一种摆法最能说明:总有一个笔筒里至少放有2支铅笔呢?
3、平均分:为什么这样分呢?
生:我是这样想的,先假设每个笔筒中放1支,这样还有1支,这是无论放到哪个笔筒,那个笔筒中就有2支了,所以我认为是对的。(课件演示)
师:你为什么要先在每个笔筒中放1支呢?
生:因为总共只有4支,平均分,每个笔筒只能分到1支。
师:为什么一开始就要去平均分呢?
生:平均分,就可以使每个笔筒中的笔尽可能少一点。也就有可能找到和题目意思不一样的情况。
师:我明白了,但这样能证明总有一个笔筒中肯定会有2 支笔,怎么就证明了至少有2支呢?
生:平均分已经使每个笔筒中的笔尽可能的少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。
师:看来,平均分是保证“至少”数的关键。
4、列式:
①你能用算式表示吗?
4÷3=1……1?? 1+1=2
②讲讲算式含义。
a、指名讲:假设把4支铅笔平均放进3个笔筒中,每个笔筒放1支,剩下的1支就要放进其中的一个笔筒,1+1=2,所以总有一个笔筒至少有2支铅笔。
b、真棒!讲给你的同桌听。
5、运 用:把5支铅笔放进4个笔筒不管怎么放,总有一个笔筒至少有几支铅笔?? 请用算式表示出来。
5÷4=1……1?? 1+1=2
说说算式的意思。
a、同桌齐说。
b、谁来说一说?
师:我们会用除法算式表示平均分的过程,这种方法更为快捷、简明。
(四)探究稍复杂的鸽巢问题
1、加深感悟:我们继续研究这样的问题,边计算边思考:这样的题目有什么特点?结论中的至少数是怎样得到的?
2、题组(开火车,口答结果并口述算式)
(1)6支铅笔放进5个笔筒里,总有一个笔筒里面至少有()支铅笔
(2)7支铅笔放进5个笔筒里,总有一个笔筒里面至少有()支铅笔
7÷5=1…… 2?? 1+2=3?
7÷5=1…… 2?? 1+1=2
出现了两种答案,究竟那种正确?同桌商量商量。不行我再救场(学生讨论)
你认为哪种结果正确?为什么?
质 疑:为什么第二次还要平均分?(保证“至少”)
把铅笔平均分才是解决问题的关键啊。
(3)把笔的数量进一步增加:
8支铅笔放5个笔筒里,至少数是多少?
8÷5=1……3?? 1+1=2
(4)9支铅笔放5个笔筒里,至少数是多少?
9÷5=1……4?? 1+1=2
(5)好,再增加一支铅笔?至少数是多少?
还用加吗?为什么?? 10÷5=2?? 正好分完, 至少数是商
(6)好再增加一支铅笔,,你来说
11÷5=2……1?? 2+1=3?? 3个
①你来说说现在至少数为什么变成3个了?(因为商变了,所以至少数变成了3.)
②那同学们再想想,铅笔的支数到多少支时,至少数还是3?
③铅笔的支数到多少支的时候,至少数就变成了4了呢?
(7)把28支铅笔放进5个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。28÷5=5……3?? 5+1=6??
(8)算的这么快,你一定有什么窍门?(比比至少数和商)
(9) 把m支铅笔放进n个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。(商+1)
3、观察算式,同桌讨论,发现规律。
铅笔数÷笔筒数=商……余数” “至少数=商+1”
你和他们的发现相同吗?出示:商+1
4、质疑:和余数有没有关系?
(明确:与余数无关,因为不管余多少,都要再平均分,所以就用“商+1”)
(五)归纳概括鸽巢原理
1、解答:那现在会求100支铅笔放进30个笔筒中的至少数了吗?
100÷30=3…… 10?? 3+1=4 至少数是4个
(因为把100支铅笔平均放进30个笔筒中,每个笔筒屉放3支,剩下的10支在平均再放进其中10个笔筒中。所以,不管怎么放,总有一个笔筒里至少放进4支铅笔。)
2、推广:
刚才我们研究了铅笔放入笔筒的问题,其他还有很多问题和它有相同之处。请看:
(1)书本放进抽屉
把8本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?
8÷3=2……2? 2+1=3
(因为把8本书平均放进3个抽屉,每个抽屉放2本,剩下的2本就要放进其中的2个抽屉。所以,不管怎么放,总有一个抽屉里至少放进3本书。)
(2)鸽子飞进鸽巢
11只鸽子飞进4个鸽笼,至少有几只鸽子飞进同一只鸽笼?
11÷4=2……3? 2+1=3
答:至少有 3只鸽子飞进同一只鸽笼。
(3)车辆过高速路收费口(图)
(4)抢凳子
书、鸽子、同学就相当于铅笔,称为要放的物体,抽屉、鸽笼、凳子就相当于笔筒,统称为抽屉。物体数量大于抽屉数量,类似的问题我们都可以用这种方法解答。
3、建立模型:鸽巢原理:
同学们发现的这个原理和一位数学家发现的一模一样,让我们追溯到150多年以前:
知识链接:(课件)最早指出这个数学原理的,是十九世纪的德国数学家“狄利克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄利克雷原理”。以上这些问题有相同之处,其实鸽巢、抽屉就相当于笔筒,鸽子、书就相当于铅笔。人们对鸽子飞回鸽巢这个事例记忆犹新,所以像这样的数学问题就叫做鸽巢问题或抽屉问题,它被广泛地应用于现实生活中。运用这一规律能解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
揭示课题:这是我们今天学习的第五单元数学广角——鸽巢问题,它们里面蕴含的这种数学原理,我们就叫做鸽巢原理或抽屉原理。
5、小结:分析这类问题时,要想清楚谁是鸽子,谁是鸽巢?
有信心用我们发现的原理继续接受挑战吗?
3、巩固与应用
那我们回头看看课前小魔术,你明白它的秘密了吗?
1、 揭秘魔术:一副牌,取出大小王,还剩52张牌,你们5 人每人随意抽一张,我知道至少有2张牌是同花色的。
答:因为把5张牌,平均分在4个花色里,每个花色有1张,剩下的1张无论是什么花色,总有一个花色至少是2张。
正确应用鸽巢原理是表演成功的秘密武器!
2、飞镖运动
同学们玩过投飞镖吗?飞镖运动是一种集竞技、健身及娱乐于一体的绅士运动。
课件:张叔叔参加飞镖运动比赛,投了5镖,成绩是41环,张叔叔至少有一镖不低于(? )环。
在练习本上算一算,讲给你的同桌听听。
谁来给大家说说你是怎么想的?(5相当于鸽巢,41相当于鸽子。把......)
41÷5=8……1? 8+1=9
在我们同学身上也有鸽巢问题,让我们先了解一下六年级的情况。
3、我们六年级共有367名学生,其中六(2班)有49名学生。
(1)六年级里至少有两人的生日是同一天。
(2)六(2)班中至少有5人的生日是在同一个月。
他们说的对吗?为什么?
同桌讨论一下。
谁来说说你们的想法?
(1、367人相当于鸽子,365、或366天相当于鸽巢......
? 2、49人相当于鸽子,12个月相当于鸽巢......)
真理是越辩越明!
3、星座测试命运
说起生日,我想起了现在非常流行的星座。采访几位同学,你是什么星座?
你用星座测试过命运吗?你相信星座测试的命运吗?
我们用鸽巢原理来说说你的想法。
全中国13亿人,12个星座,总有至少一亿以上的人命运相同。尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的命,可能吗?这真的很荒谬。用星座测试命运,充其量是一种游戏娱乐一下而已,命运掌握在自己手中。
4、柯南破案:
?? “鸽巢问题”的原理不仅在数学中有用,在现实生活中也随处可见,看,谁来了?
(课件)有一次,小柯南走在大街上,无意间听到了一位老大爷和一个年轻人的对话:
年轻人:大爷,我最近急用钱,想把我的一个手机号卖掉,价格500元,请问您要吗?
大爷:是什么手机号呢?这么贵?
年轻人:我的手机号很特别,它所有的数字中没有一个数字重复......所以才这么贵的!
老大爷:哦!
听到这里,柯南马上跑过去悄悄提醒老大爷:“大爷,这是一个骗子,您要小心!”并且马上报了警,警察赶到后调查发现这个人果真是个骗子。
聪明的你,知道柯南是根据什么判断那个年轻人是骗子的吗?
(手机号11位数字相当于鸽子。0-9这十个数字相当于鸽巢,11÷10=1…1? 1+1=2,总有至少一个数字重复出现。)
4、 回顾与整理。
这节课我们认识了“鸽巢问题”,其实生活中还有许多的类似于“鸽巢问题”这样的知识等待我们去发现,去挖掘。只要你留心观察加上细心思考,一定会在平凡的事件中有不平凡的发现,也能创造一条真正属于你自己的原理!
下 课!
板书设计:
鸽? 巢? 问? 题
?? 物体? 抽屉 至少数
4? ÷ 3 =? 1……1?? ?? 1+1=2?
5? ? ÷ 4? =? 1……1? ? ? 1+1=2?
7? ? ÷ 5? =? 1……2? ? ? 1+1=2??
9 ?? ÷ 5? =? 1……4? ?? 1+1=2??
11 ? ÷? 5? =? 2……1 ?? ? 2+1=3??
28?? ?? ÷ 5? =? 5……3? ?? 5+1=6??
100?? ? ÷ 30? =? 3……1 3+1=4?
m ÷ n = 商……余数? 商+1
2023年三年级数学下册教案篇5
教材分析:
本课主要内容是教学两位数加两位数口算方法。我们已经学习了口算整十数加、减整十数;两位数加、减一位数;两位数加、减整十数;以及笔算两位数加、减两位数。口算两位数加两位数是前面口算教学的延续,又是以后万以内加减法的基础,这节课的教学内容在整个小学数学的计算中起着承前启后的重要作用。
设计理念:
1、联系学生生活实际,让学生在生动、丰富的背景中学习数学,感受数学与现实的联系,体会学数学的实用性,学有用的数学。
2、重视学生已有的知识经验,注意体现算法的多样化,提倡学生个性化的学习,变“学方法”为主动的“构建方法”,运用观察、探求、合作交流的教学方法培养学生对数学初步的情感、态度、价值观。
3、渗透估算意识。
教学目标:
1、掌握口算两位数的计算方法,并能正确地进行口算。
2、从生活中发现数学问题、整理、分析数据,解决实际问题。
3、培养学生解决问题方法多样化,提高思维的灵活性。
教学重点:
1、正确地进行两位数加法的口算。
2、能够根据具体情况选择适当的解决问题的方法。
教学难点:
培养学生的口算能力。
教法学法:
讲解法、引导法、自主探索
教学过程:
一、新课导入
1、在()里填上合适的数。
复习两位数的分成
2、看谁算得又快又正确。
35+30=64+5=
48+30=79+4=
53+40=66+8=
学生独立完成,集体订正。
师:谁来说一说你是怎样计算这些题的呢?先来看左边这一组两位数加整十数,你是怎样计算的呢?
生:先把十位上的数相加,再加上个位上的数。
学生说教师板演。
师:那么右边这一组两位数加一位数,你又是怎样计算的呢?
生:我想把个位上的数相加,再加整十数。
学生说教师板演。
二、新知讲授。
课件出示“海宝”介绍上海世博会的资料。
1、创设情境,提出问题。
(1)观察主题图,找到数学信息。
课件出示,师:观察这幅图,你知道了哪些数学信息?
指名回答
(2)发现问题,提出问题。
师:如果你是每个年级的领队老师,首先要考虑什么?
预设:应该考虑要买多少张车票?
师:你能提出什么数学问题?指名提问题。
2、自主探究,掌握算法。
(1)教学例1
教师选择性地板书问题:“一年级一共要买多少张车票?”
师:你会解决这个问题吗?请你写在练习本上。
学生独立列式计算。
汇报交流。
(2)教学例2
选择学生提出的“二年级一共要买多少张车票?”的问题,针对学生列出的算式39+44=?让学生独立思考,用自己的方法进行口算。
汇报交流。
师:说一说你是怎样口算的?
教师根据学生的汇报板书。
(3)观察对比
师:刚才学习的这两道题有什么相同点和不同点?
生:今天学习的都是两位数加两位数的口算。
师引导:这两个算式的两个加数的个位上的数与个位上的数之和相比较,有什么发现?
学生回答。
教师小结:也就是35+34是不进位加法,39+44是进位加法。
师:两位数加两位数口算在计算时要注意什么呢?
个位相加满十,一定要向十位进1。
三、知识应用。
1、填一填(判断十位上的数)
师:你能利用口算的方法很快填出方框里的数吗?
2、先说一说,再计算。
23+46=63+17=
3、请你利用主题图中的信息完成下面的题目,并说说你是怎样计算的。
三年级一共要买多少张车票?
四年级一共要买多少张车票?
4、解决问题。
课件出示:我和爸爸一共要花多少钱?
四、小结。
师:大家今天一定有很多收获吧,谁愿意和大家一起分享呢?
2023年三年级数学下册教案篇6
教学目标:
1、使学生体会学习除法估算的必要性,了解除数是一位数除法估算的一般方法。
2、引导学生根据具体情境合理进行估算,培养学生良好的思维品质和应用数学的能力。
教学重、难点:
在具体的情境中进行除法估算,表达估算的思路。
教学准备:
口算卡片、每个小组每人准备30根小棒。
教学过程:
一、复习旧知,巩固技能:
1、师出示口算卡片:
1800÷32400÷6250÷5420÷6
2700÷9140÷7120÷65400÷6
学生开火车直接说得数。看哪一组开得又对又快。
2、同桌一人说算式一人回答,答对的就坐下。
二、引入情境,激发兴趣:
1、出示教学挂图,呈现农贸市场的情境图
师:上一节课我们共同为赵伯伯、李阿姨和王叔叔解决了难题,这节课我们继续为李叔叔他们三人解决困难,好吗?他们遇到了什么难题呢?我们一起来看看吧。
2、呈现李叔叔三人的情境图:
师:你们看,李叔叔他们三人想怎么把蔬菜运走呀?
(用三辆车一次把这124箱蔬菜全部运完。)
课件演示:小精灵聪聪出现了:你们能提出什么问题吗?
同桌交流、讨论。
请学生提出问题,老师板书:
李叔叔他们三人平均每人大约运多少箱?
师:这道题该怎么解决呢?(让学生讨论)
三、自主探索,学习新知:
师引导:你能大概猜一下他们每一个人运了多少箱吗?可以用什么方法快速地解决它呢?
生讨论后反馈结果。
请一学生叙述估算的过程。
可能出现以下几种情况:
(1)把124看成120,120÷3=40(箱)
(2)把124拆成120和4,再分别和3除,每人平均分了40箱,还剩4箱,又分了一次,最后还剩下一箱,每个人大约运了41箱。
师板书:124÷3≈40(箱)
或者124=120+4120÷3=404÷3=1……1
124÷3≈41(箱)
四、小结:
师:刚才你们是用什么方法很快地帮李叔叔解决难题的?(估算)这节课让你学到了什么知识?(学生发言)在生活中你还认为哪些地方用得到估算呢?
估算经常在我们的生活中出现,它是一种非常有用的方法,当我们遇到数字较大的题目,比如分东西,而你又不能准确地算出该平均分多少物品给每个人时,我们就可以用估算来计算。
五、巩固练习,加深印象:
做p16“做一做”第1、2题
1、学生说说题意,并说一说为什么260可以看作240或者280。
之后解答这道题目。
2、要求学生独立完成本道题。之后进行全班性讲评。
六、课外延伸,拓展思维:
游戏:神算子
游戏的规则:
1、要求学生把事先准备好的牙签放到一起。
2、每抓一把牙签后放到一边,先数出根数。接着再快速地算出该平均分给组内每个成员多少根牙签。
3、每人一次机会。看谁算得又快又好。
4、最后评选出组内的神算子。
板书设计:
124÷3≈40(箱)
或者124=120+4
120÷3=40(箱)4÷3=1(箱)……1(箱)
124÷3≈41(箱)