编写情境化的教案可以激发学生的学习兴趣和参与度,制定有趣有趣的教案能够增加学生对学科的兴趣和学习的动力,下面是淘范文小编为您分享的分数乘除法的教案最新6篇,感谢您的参阅。
分数乘除法的教案篇1
教学目标:
1、通过本课的复习使学生能很好的掌握本单元所学的知识,能正确 的计算分数的除法。
2、全盘对本单元的知识有个全面的了解,解决在学习时所遇到的问题。
3、能很好的计算分数乘除混合运算的题目。
教学重点:分数除法的计算的方法。
难点:分数乘除的混合运算的运算的计算的正确率
教学过程:
一、复习回顾
小组讨论
1、怎么样来计算分数除法
请学生进行讨论,讨论好以后 再请学生进行回 答。
2、教师强调:在计算分数除法的时候我们除以一个数等于乘以这个数的倒数。
请生说说你是怎么来理解这句话的。
二、进行练习
1、做课本66的1
请学生直接的在课本上进行口算,口算的时候让学生要看清题目,注意区分乘和除。
学生做好了以后再请学生进行口答。
对于做错的题目,让请学生自己来分析下错误的原因是什么?
2、做第2题
前面4题可以让学生独立的做,做好了以后再请学生说说计算的方法是怎么样的?
并请学生上黑板进行板演。
进行集体订正。
3、对比练习
1) 城东小学六年级有学生450人,占全校人数的2/9,全校有学生多少人?
2)城东小学有学生450人,六年级占其中的2/9,六年级有学生多少人?
4、做66页第4题
请学生独立的做,做好了以后请学生分析一下说说你是怎么想的?
做好以后请学生进行板演
5、根据方程或算式,将应用题补充完整。
1)、120×3/8
( ),苹果树的棵数是梨树的3/8,( )?
2)、3/8x=120
( ),苹果树的棵数是梨树的3/8,( )?
3)、120+120×3/8
( ),苹果树的棵数是梨树的3/8,( )?
请学生独立的做,做好了以后请学生说说是怎么想的?
三、布置作业
做66页第5~7题
1、在计算练习中,可增加以下练习,帮助学生进一步体会分数计算中的一些规律。
在( )里填上“>”“
4/7×1/3( )4/7 4/7×4/3( )4/7
4/7÷1/3( )4/7 4/7÷4/3( )4/7
4/7÷1( )4/7 4/7×1( )4/7
先让学生独立思考,再说说判断的结果和理由。
2、在解决实际问题时,要紧紧围绕数量关系的分析学生掌握分数应用题的解答方法。
3、加强对比有利于学生辨析什么情况下列算式解答,什么情况下列方程式方便。
课后反思:
通过今天的复习,部分学生已初步感受到单位"1"的量未知,列方程解答,实际也可以用分数除法解答。于是我及时引导,再次让学生体会,从而理解乘除之间互逆关系。
在今天学习第4题的练习中,结合具体题目,补充了工作效率、工作时间、工作总量三个数量之间的关系,并结合学生体会到的分数乘除法之间的关系再次体会到列方程解与分数除法解的优劣。
在处理第7题的练习中,学生对变化着的“1”不注意,部分学生将国土面积乘5/2等于草地面积。归其原因还是没有掌握分数应用题数量关系。
分数乘除法的教案篇2
教学目标
1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。
2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。
3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。
教学重难点
理解分数与除法的关系
教学准备
每人准备4张同样大小的圆片
教学过程
一、引入情境,揭示例题
口答题
1、把8块饼干平均分给4个小朋友,每人分得几块?
2、把4块饼干平均分给4个小朋友,每人分得几块?
3、把3块饼干平均分给4个小朋友,每人分得几块?
怎样列式?板书3÷4
引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?
不满1块那该怎么表示呢?
生:小数或分数
二、实践操作探索研究
师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?
学生动手操作
教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的.把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。
师:接下来我们请同学汇报一下他们研究所得结果。
(生讲述这样分的理由)
教师总结:
(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。
(2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。
总结:把3块饼干平均分给4个小朋友,每人分得3/4块
板书:3÷4=3/4(块)
师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?
学生口述理由。板书:3÷5
师:想想该怎么去分?把你的想法和同桌交流下。
指名让学生说说思考过程。
板书:3÷5=3/5(块)
师:如果分给7个小朋友呢?
学生口述3÷7=3/7(块)
三、归纳总结,围绕主题
师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。
板书课题:分数与除法的关系
生相互交流。教师板书:被除数÷除数=
师:除法算式又可以写成什么形式?
生补充:被除数÷除数=被除数/除数
师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?
生:a÷b=a/b
师:这里的a和b可以取任何数吗?为什么?
生:除数不能为0。
师:分数和除法之间的关系,你有什么好的方法记住它们吗?
生交流讨论并回答
师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。
四、巩固练习,拓展延伸
师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。
集体校对。
师引导:比较上下两行有什么不同?
在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。
师:接下来请大家独立完成“试一试”两小题。
然后小组交流你是怎么想的?
师:把7分米改写成用米作单位,可以列怎样的除法算式?
生:7÷10=7/10(米)
师:第二个呢?
生:23÷60=23/60(时)
师:独立完成“练一练”的第二题
集体讲评校对。
师:完成“练习八”的第一题口答
师:完成“练习八”的第三题
学生在书本上完成,
教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?
五、课堂作业
完成“练习八”的第二题
分数乘除法的教案篇3
设计说明
苏霍姆林斯基曾说过:“引导学生借助已有的经验去获取知识,这是最高的教学技巧之所在。”本节课的教学通过让学生动手操作、自主探究、合作交流等方式,使学生经历“探究——发现——验证——修改”的过程。通过一系列的活动,使学生完成了知识的自我构建,同时也加深了对分数除以整数的意义的理解,符合学生的发展需要。
另外,本节课的教学设计还遵循学生的认知规律和年龄特点,对计算进行探究式教学。让学生以自主探究和合作交流的方式,在分析问题和解决问题的过程中体验成功的喜悦,不仅使学生获得了知识,发展了智力,还激发了学生学习数学的兴趣
课前准备
教师准备 ppt课件、长方形包装纸
学生准备 长方形纸
教学过程
⊙创设情境,提出问题
1.问题导入。
师:同学们,我们学过整数除以整数(0除外),也知道了整数除法的意义。今天我们将学习分数除法。那么分数除法的意义是什么呢?它和整数除法的意义是否相同呢?下面就让我们带着疑问一起来探究一下几个小朋友分饼的问题。
请你们列出算式并计算。
(1)每人吃张饼,4个人共吃多少张饼?
(2)把2张饼平均分给4个人,每人分得多少张饼?
(3)有2张饼,每人分得张饼,可以分给几个人?
(引导学生观察上面的三道题,并说一说它们都是已知什么,求什么)
2.揭示分数除法的意义。
讨论:(3)题中涉及了分数除法,想一想,分数除法的意义和整数除法的意义相同吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
设计意图:通过对一组题的探究和对比,使学生发现分数除法的意义与整数除法的意义相同,这样新旧知识的迁移过渡,可以使学生对分数除法的意义理解起来更加容易。
⊙合作交流,探究新知
1.引导参与,探究新知。
(1)出示教材55页例题。
师:(出示一张长方形的.包装纸)老师想用这张漂亮的包装纸把送给妈妈的礼物包装起来,可是这张纸太大了,把它的平均分成2份就够了,每份是这张纸的几分之几呢?
(2)动手操作,分一分,涂一涂。
师:请大家拿出一张长方形纸,涂色表示出这张纸的。
(学生动手操作,教师巡视指导)
师:把一张长方形纸的平均分成2份,想一想,是把哪一部分平均分成了2份?其中的一份是多少呢?请大家用自己喜欢的颜色表示出来。
(学生活动,教师指导)
(3)观察发现。
师:通过画图,你发现了什么?能用一个算式表示出涂色的过程吗?
预设
(教师利用课件配合学生汇报)
生1:把平均分成2份,每份是2个小格,占这张纸的。
生2:里面有4个,平均分成2份,每份就是2个,是,即÷2=。
设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生进一步理解、感受分数除法的意义。
2.初探算法。
师:如果不看图,你会计算÷2吗?你能提出大胆的猜想吗?
预设
生:分母不变,被除数的分子除以整数得到的商作商的分子。
提出质疑,验证猜想,理解新知。
(1)尝试验证,发现问题。
师:科学的验证不是仅通过计算一两道题就能得出结论的,你们能不能自己设计一道分数除以整数(0除外)的计算题来验证刚才的猜想是否正确呢?
(学生汇报验证的结果)
师:为什么有些题目能很顺利地算出来,而有些题目却不能很快地算出准确的答案呢?(分数的分子不能被除数整除)
分数乘除法的教案篇4
教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生
动手操作的能力和抽象,概括,归纳的能力.
教学重点:分数的数感培养,以及与除法的联系.
教学难点:抽象思维的培养.
教学过程:
一,铺垫复习,导入新知 [课件1]
1,提问:a,7/8是什么数 它表示什么
b,7÷8是什么运算 它又表示什么
c,你发现7/8和7÷8之间有联系吗
2,揭示课题.
述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".
板书课题:分数与除法的关系
二,探索新知,发展智能
1,教学p90 .例2:把1米长的钢管平均截成3段,每段长多少
提问:a,试一试,你有办法解决这个问题吗
板书:用除法计算:1÷3=0.333……(米)
用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就
是1/3米.
b,这两种解法有什么联系吗
(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)
板书: 1÷3= 1/3
c,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来
表示 也就是说整数除法的商也可以用谁来表示
2,教学p90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]
(1)分析:a,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式
b,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢
板书: 3÷4= 3/4
(2)操作检验(分组进行)
① 把3个同样大小的'圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼
② 反馈分法.
提问:a,请介绍一下你们是怎么分的
(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)
(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)
b,比较这两种分法,哪种简便些
※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.
3,小结提问:a,观察上面的学习,你获得了哪些知识
板书: 被除数 ÷ 除数 = 除数 / 被除数
b,你能举几个用分数表示整数除法的商的例子吗
c,能不能用一个含有字母算式来表示所有的例子
板书: a÷b=b/a (b≠0)
d,b为什么不能等于0
4, 看书p91 深化.
反馈:说一说分数和除法之间和什么联系 又有什么区别
板书:分数是一个数,除法是一种运算.
三,巩固练习 [课件5]
1,用分数表示下面各式的商.
5÷8 24÷25 16÷49 7÷13 9÷9 c÷d
2,口算.
7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )
3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.
四,全课小结
当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.
在整数除法中零不能作除数,那么,分数的分母也不能是零.
五,家作
p93 .1,2,3
板书设计: 分数与除法的关系
例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4
被除数 ÷ 除数 = 除数 / 被除数
a÷b=b/a (b≠0)
分数是一个数,除法是一种运算
分数乘除法的教案篇5
设计说明
本节课通过设置疑问,运用自主探索、合作探究等学习方式理解分数与除法的关系,运用此关系探索假分数与带分数的互化方法,理解假分数与带分数的互化算理,培养学生观察、比较、推理、归纳及交流的能力。本节课在教学设计上主要有以下两大特点:
1.让学生在生活中感悟数学。
从生活实际出发,从“分蛋糕”的情境入手,把教材内容与“数学现实”有机地结合起来,符合小学生的认知特点,可以消除学生对数学知识的陌生感,同时增强学生的数学应用意识,唤起学生对数学学习的兴趣。
2.让学生体验成功的乐趣。
数学课堂教学要着眼于学生的潜能和可发展性,充分相信学生,给学生提供充分的自主探索的时间与空间,鼓励学生自主地进行观察、实验、猜测、推理、验证、交流等数学活动(探索除法与分数的关系,探索假分数与带分数互化的方法),使学生在自主探索的过程中真正理解和掌握数学基础知识与基本技能、数学思想和方法,从而获得广泛的数学活动经验。
课前准备
教师准备ppt课件
学生准备学具三种颜色的纸条
教学过程
第1课时分数与除法(一)
⊙设置疑问,导入课题
1.下面各题的商可以分为哪几类?
36÷6=64÷5=0.880÷5=165÷10=0.5
3÷7=0.428571428571…4÷9=0.4444…
引导学生归纳分类:
36÷6=6和80÷5=16的商为整数;
4÷5=0.8和5÷10=0.5的商为有限小数;
3÷7=0.428571428571…和4÷9=0.4444…的商为循环小数。
2.师总结:两个自然数相除,不能整除的时候,它们的商还可以用分数来表示。今天我们就来学习这部分内容。[板书:分数与除法(一)]
设计意图:复习旧知,回顾所学知识的内在联系,引出课题。
⊙层层深入,探索分数与除法的关系
1.出示问题,理解题意,列出算式。
课件出示:把1块蛋糕平均分给2个小朋友,每人可以分到几块蛋糕?如果把7块蛋糕平均分给3个小朋友呢?
师引导学生读题,提问(1):把1块蛋糕平均分给2个小朋友,可以写出怎样的算式?把7块蛋糕平均分给3个小朋友呢?
预设生:根据除法的意义,可以分别列式为1÷2和7÷3。
提问(2):把1块蛋糕平均分给2个小朋友,每人分到几块蛋糕?把7块蛋糕平均分给3个小朋友呢?
预设生:每人分别可以分到块和块。
提问(3):与1÷2之间是什么关系?与7÷3呢?
(学生观察、讨论后可以明确:1÷2=,7÷3=)
2.初步探索除法与分数的关系。
师:观察1÷2=,7÷3=,说一说整数除法中被除数和除数与得数中的分子和分母存在着什么样的关系。
(学生小组讨论交流,汇报)
师生共同总结:任何一个分数都可以表示为分子除以分母,其中,分子相当于被除数,分母相当于除数。即:被除数÷除数=(除数不为0)。
如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?
质疑:这里的a和b是否可以是任意自然数?为什么?
(不可以,这里的b≠0。在除法中,除数不能为0,所以在分数中,分母也不能为0。教师板书:b≠0)
分数乘除法的教案篇6
教学内容:
苏教版义务教育教科书《数学》六年级上册第49~50页例5、试一试和练一练,第51页练习七第1~4题。
教学目标:
使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个
数”的简单实际问题,进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。
教学重点:
列方程解答“已知一个数的几分之几是多少,求这个数”的`简单实际问题。
教学难点:
理解列方程解决简单分数实际问题的思路。
教学过程:
一、导入
1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?
出示:小瓶的果汁是大瓶的。
这句话表示什么?你能说出等量关系式吗?
如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。
如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?
2、揭示课题:简单的分数除法应用题
二、教学例5
1、出示例5,学生读题。
提问:你想怎么解决这个问题?
2、讨论交流:你是怎么想、怎么算的?
(1)用除法计算。
引导讨论:为什么可以用除法计算?依据是什么?
(2)用方程解答。
讨论:用方程解答是怎么想的,依据是什么?
让学生在教材中完成解方程的过程,并指名板演。
3、引导检验:900是不是原方程的解呢,怎么检验?
交流检验的方法。
4、教学“试一试”
(1)出示题目,让学生读题理解题目意思。
(2)讨论:这里中的两个分数分别表示什么意思?
这题中的数量关系式是什么?
(3)这题可以怎么解答,自己独立完成,并指名板演。
(4)交流:你是怎么解决这个问题的?
4、小结。
三、练习
1、做“练一练”。
各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。
2、做练习十二第1题。
(1)读题,画出题目中的关键句。
(2)学生说题意
(3)引导学生说出并在书上写出数量关系式。
(4)独立解答,并指名板演。
(5)集体评议并校正。
3、做练一练第2题。
启发:你是怎样分析数量关系的?为什么要列方程解答?
3、小结解题策略。
四、作业:练习十二第1、3、4题。
板书设计:(略)